Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 56 results
1.

OptoREACT: Optogenetic Receptor Activation on Nonengineered Human T Cells.

red PhyB/PIF6 HEK293T human T cells Jurkat Signaling cascade control Extracellular optogenetics
ACS Synth Biol, 9 Feb 2024 DOI: 10.1021/acssynbio.3c00518 Link to full text
Abstract: Optogenetics is a versatile and powerful tool for the control and analysis of cellular signaling processes. The activation of cellular receptors by light using optogenetic switches usually requires genetic manipulation of cells. However, this considerably limits the application in primary, nonengineered cells, which is crucial for the study of physiological signaling processes and for controlling cell fate and function for therapeutic purposes. To overcome this limitation, we developed a system for the light-dependent extracellular activation of cell surface receptors of nonengineered cells termed OptoREACT (Optogenetic Receptor Activation) based on the light-dependent protein interaction of A. thaliana phytochrome B (PhyB) with PIF6. In the OptoREACT system, a PIF6-coupled antibody fragment binds the T cell receptor (TCR) of Jurkat or primary human T cells, which upon illumination is bound by clustered phytochrome B to induce receptor oligomerization and activation. For clustering of PhyB, we either used tetramerization by streptavidin or immobilized PhyB on the surface of cells to emulate the interaction of a T cell with an antigen-presenting cell. We anticipate that this extracellular optogenetic approach will be applicable for the light-controlled activation of further cell surface receptors in primary, nonengineered cells for versatile applications in fundamental and applied research.
2.

Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice.

blue CRY2/CIB1 CRY2/CRY2 CRY2olig HEK293T U-2 OS Transgene expression Endogenous gene expression Organelle manipulation
bioRxiv, 16 Oct 2023 DOI: 10.1101/2023.10.16.562453 Link to full text
Abstract: Phase separation of biomolecules into condensates is a key mechanism in the spatiotemporal organization of biochemical processes in cells. However, the impact of the material properties of biomolecular condensates on important processes, such as the control of gene expression, remains largely elusive. Here, we systematically tune the material properties of optogenetically induced transcription factor condensates and probe their impact on the activation of target promoters. We demonstrate that rather liquid condensates correlate with increased gene expression levels, whereas a gradual transition to more stiff condensates converts otherwise activating transcription factors into dominant negative inhibitors. We demonstrate the general nature of these findings in mammalian cells and mice, as well as by using different synthetic and natural transcription factors. We observe these effects for both transgenic and cell-endogenous promoters. Our findings provide a novel materials-based layer in the control of gene expression, which opens novel opportunities in (opto-)genetic engineering and synthetic biology.
3.

A Photoreceptor-Based Hydrogel with Red Light-Responsive Reversible Sol-Gel Transition as Transient Cellular Matrix.

red PhyB/PIF6 in vitro Extracellular optogenetics
Adv Mater Technol, 18 Jun 2023 DOI: 10.1002/admt.202300195 Link to full text
Abstract: Hydrogels with adjustable mechanical properties have been engineered as matrices for mammalian cells and allow the dynamic, mechano-responsive manipulation of cell fate and function. Recent research yields hydrogels, where biological photoreceptors translated optical signals into a reversible and adjustable change in hydrogel mechanics. While their initial application provides important insights into mechanobiology, broader implementation is limited by a small dynamic range of addressable stiffness. Herein, this limitation is overcome by developing a photoreceptor-based hydrogel with reversibly adjustable stiffness from ≈800 Pa to the sol state. The hydrogel is based on star-shaped polyethylene glycol, functionalized with the red/far-red light photoreceptor phytochrome B (PhyB), or phytochrome-interacting factor 6 (PIF6). Upon illumination with red light, PhyB heterodimerizes with PIF6, thus crosslinking the polymers and resulting in gelation. However, upon illumination with far-red light, the proteins dissociate and trigger a complete gel-to-sol transition. The hydrogel's light-responsive mechanical properties are comprehensively characterized and it is applied as a reversible extracellular matrix for the spatiotemporally controlled deposition of mammalian cells within a microfluidic chip. It is anticipated that this technology will open new avenues for the site- and time-specific positioning of cells and will contribute to overcome spatial restrictions.
4.

Opto-APC: Engineering of cells that display phytochrome B on their surface for optogenetic studies of cell-cell interactions.

red PhyB/PIF6 HEK293T Jurkat Raji Control of cell-cell / cell-material interactions Extracellular optogenetics
Front Mol Biosci, 20 Feb 2023 DOI: 10.3389/fmolb.2023.1143274 Link to full text
Abstract: The kinetics of a ligand-receptor interaction determine the responses of the receptor-expressing cell. One approach to experimentally and reversibly change this kinetics on demand is optogenetics. We have previously developed a system in which the interaction of a modified receptor with an engineered ligand can be controlled by light. In this system the ligand is a soluble Phytochrome B (PhyB) tetramer and the receptor is fused to a mutated PhyB-interacting factor (PIFS). However, often the natural ligand is not soluble, but expressed as a membrane protein on another cell. This allows ligand-receptor interactions in two dimensions. Here, we developed a strategy to generate cells that display PhyB as a membrane-bound protein by expressing the SpyCatcher fused to a transmembrane domain in HEK-293T cells and covalently coupling purified PhyB-SpyTag to these cells. As proof-of-principle, we use Jurkat T cells that express a GFP-PIFS-T cell receptor and show that these cells can be stimulated by the PhyB-coupled HEK-293T cells in a light dependent manner. Thus, we call the PhyB-coupled cells opto-antigen presenting cells (opto-APCs). Our work expands the toolbox of optogenetic technologies, allowing two-dimensional ligand-receptor interactions to be controlled by light.
5.

Shedding light on current trends in molecular optogenetics.

blue green red violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Chem Biol, 18 Aug 2022 DOI: 10.1016/j.cbpa.2022.102196 Link to full text
Abstract: Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid-liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.
6.

Spatially Defined Gene Delivery into Native Cells with the Red Light-Controlled OptoAAV Technology.

red PhyB/PIF6 A-431 in vitro
Curr Protoc, Jun 2022 DOI: 10.1002/cpz1.440 Link to full text
Abstract: The OptoAAV technology allows spatially defined delivery of transgenes into native target cells down to single-cell resolution by the illumination with cell-compatible and tissue-penetrating red light. The system is based on an adeno-associated viral (AAV) vector of serotype 2 with an engineered capsid (OptoAAV) and a photoreceptor-containing adapter protein mediating the interaction of the OptoAAV with the surface of the target cell in response to low doses of red and far-red light. In this article, we first provide detailed protocols for the production, purification, and analysis of the OptoAAV and the adapter protein. Afterward, we describe in detail the application of the OptoAAV system for the light-controlled transduction of human cells with global and patterned illumination. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production, purification, and analysis of PhyB-DARPinEGFR adapter protein Basic Protocol 2: Production, purification, and analysis of OptoAAV Basic Protocol 3: Red light-controlled viral transduction with the OptoAAV system Support Protocol: Spatially resolved transduction of two transgenes with the OptoAAV system.
7.

Benchmarking of Cph1 Mutants and DrBphP for Light-Responsive Phytochrome-Based Hydrogels with Reversibly Adjustable Mechanical Properties.

red Cph1 DrBphP Benchmarking
Adv Biol (Weinh), 28 Apr 2022 DOI: 10.1002/adbi.202000337 Link to full text
Abstract: In the rapidly expanding field of molecular optogenetics, the performance of the engineered systems relies on the switching properties of the underlying genetically encoded photoreceptors. In this study, the bacterial phytochromes Cph1 and DrBphP are engineered, recombinantly produced in Escherichia coli, and characterized regarding their switching properties in order to synthesize biohybrid hydrogels with increased light-responsive stiffness modulations. The R472A mutant of the cyanobacterial phytochrome 1 (Cph1) is identified to confer the phytochrome-based hydrogels with an increased dynamic range for the storage modulus but a different light-response for the loss modulus compared to the original Cph1-based hydrogel. Stiffness measurements of human atrial fibroblasts grown on these hydrogels suggest that differences in the loss modulus at comparable changes in the storage modulus affect cell stiffness and thus underline the importance of matrix viscoelasticity on cellular mechanotransduction. The hydrogels presented here are of interest for analyzing how mammalian cells respond to dynamic viscoelastic cues. Moreover, the Cph1-R472A mutant, as well as the benchmarking of the other phytochrome variants, are expected to foster the development and performance of future optogenetic systems.
8.

OptoAssay - Light-controlled Dynamic Bioassay Using Optogenetic Switches.

red PhyB/PIF6 in vitro Extracellular optogenetics
bioRxiv, 8 Nov 2021 DOI: 10.1101/2021.11.06.467572 Link to full text
Abstract: Circumventing the limitations of current bioassays, we introduce the first light-controlled assay, the OptoAssay, towards wash- and pump-free point-of-care diagnostics. Extending the capabilities of standard bioassays with light-dependent and reversible interaction of optogenetic switches, OptoAssays enable a bi-directional movement of assay components, only by changing the wavelength of light. Combined with smartphones, OptoAssays obviate the need for external flow control systems like pumps or valves and signal readout devices.
9.

A small and highly sensitive red/far-red optogenetic switch for applications in mammals.

red PhyA/FHY1 HEK293 mouse in vivo Transgene expression Nucleic acid editing
Nat Biotechnol, 4 Oct 2021 DOI: 10.1038/s41587-021-01036-w Link to full text
Abstract: Optogenetic technologies have transformed our ability to precisely control biological processes in time and space. Yet, current eukaryotic optogenetic systems are limited by large or complex optogenetic modules, long illumination times, low tissue penetration or slow activation and deactivation kinetics. Here, we report a red/far-red light-mediated and miniaturized Δphytochrome A (ΔPhyA)-based photoswitch (REDMAP) system based on the plant photoreceptor PhyA, which rapidly binds the shuttle protein far-red elongated hypocotyl 1 (FHY1) under illumination with 660-nm light with dissociation occurring at 730 nm. We demonstrate multiple applications of REDMAP, including dynamic on/off control of the endogenous Ras/Erk mitogen-activated protein kinase (MAPK) cascade and control of epigenetic remodeling using a REDMAP-mediated CRISPR-nuclease-deactivated Cas9 (CRISPR-dCas9) (REDMAPcas) system in mice. We also demonstrate the utility of REDMAP tools for in vivo applications by activating the expression of transgenes delivered by adeno-associated viruses (AAVs) or incorporated into cells in microcapsules implanted into mice, rats and rabbits illuminated by light-emitting diodes (LEDs). Further, we controlled glucose homeostasis in type 1 diabetic (T1D) mice and rats using REDMAP to trigger insulin expression. REDMAP is a compact and sensitive tool for the precise spatiotemporal control of biological activities in animals with applications in basic biology and potentially therapy.
10.

Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors.

red PhyB/PIF6 A-431 A549 CHO-K1 HEK293T HeLa MDA-MB-231 MDA-MB-453 SK-OV-3 Extracellular optogenetics
Sci Adv, 16 Jun 2021 DOI: 10.1126/sciadv.abf0797 Link to full text
Abstract: Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.
11.

Synthetic biology as driver for the biologization of materials sciences.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Mater Today Bio, 26 May 2021 DOI: 10.1016/j.mtbio.2021.100115 Link to full text
Abstract: Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
12.

Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.

blue cyan green red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 18 May 2021 DOI: 10.3390/ijms22105300 Link to full text
Abstract: Biological signals are sensed by their respective receptors and are transduced and processed by a sophisticated intracellular signaling network leading to a signal-specific cellular response. Thereby, the response to the signal depends on the strength, the frequency, and the duration of the stimulus as well as on the subcellular signal progression. Optogenetic tools are based on genetically encoded light-sensing proteins facilitating the precise spatiotemporal control of signal transduction pathways and cell fate decisions in the absence of natural ligands. In this review, we provide an overview of optogenetic approaches connecting light-regulated protein-protein interaction or caging/uncaging events with steering the function of signaling proteins. We briefly discuss the most common optogenetic switches and their mode of action. The main part deals with the engineering and application of optogenetic tools for the control of transmembrane receptors including receptor tyrosine kinases, the T cell receptor and integrins, and their effector proteins. We also address the hallmarks of optogenetics, the spatial and temporal control of signaling events.
13.

Cross-TCR Antagonism Revealed by Optogenetically Tuning the Half-Life of the TCR Ligand Binding.

red PhyB/PIF6 Jurkat Signaling cascade control
Int J Mol Sci, 6 May 2021 DOI: 10.3390/ijms22094920 Link to full text
Abstract: Activation of T cells by agonistic peptide-MHC can be inhibited by antagonistic ones. However, the exact mechanism remains elusive. We used Jurkat cells expressing two different TCRs and tested whether stimulation of the endogenous TCR by agonistic anti-Vβ8 antibodies can be modulated by ligand-binding to the second, optogenetic TCR. The latter TCR uses phytochrome B tetramers (PhyBt) as ligand, the binding half-life of which can be altered by light. We show that this half-life determined whether the PhyBt acted as a second agonist (long half-life), an antagonist (short half-life) or did not have any influence (very short half-life) on calcium influx. A mathematical model of this cross-antagonism shows that a mechanism based on an inhibitory signal generated by early recruitment of a phosphatase and an activating signal by later recruitment of a kinase explains the data.
14.

The Rise of Molecular Optogenetics.

blue green Cobalamin-binding domains Cryptochromes LOV domains Review
Adv Biol (Weinh), May 2021 DOI: 10.1002/adbi.202100776 Link to full text
Abstract: Abstract not available.
15.

Green Light-Controlled Gene Switch for Mammalian and Plant Cells.

green TtCBD HEK293
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1441-9_6 Link to full text
Abstract: The quest to engineer increasingly complex synthetic gene networks in mammalian and plant cells requires an ever-growing portfolio of orthogonal gene expression systems. To control gene expression, light is of particular interest due to high spatial and temporal resolution, ease of dosage and simplicity of administration, enabling increasingly sophisticated man-machine interfaces. However, the majority of applied optogenetic switches are crowded in the UVB, blue and red/far-red light parts of the optical spectrum, limiting the number of simultaneously applicable stimuli. This problem is even more pertinent in plant cells, in which UV-A/B, blue, and red light-responsive photoreceptors are already expressed endogenously. To alleviate these challenges, we developed a green light responsive gene switch, based on the light-sensitive bacterial transcription factor CarH from Thermus thermophilus and its cognate DNA operator sequence CarO. The switch is characterized by high reversibility, high transgene expression levels, and low leakiness, leading to up to 350-fold induction ratios in mammalian cells. In this chapter, we describe the essential steps to build functional components of the green light-regulated gene switch, followed by detailed protocols to quantify transgene expression over time in mammalian cells. In addition, we expand this protocol with a description of how the optogenetic switch can be implemented in protoplasts of A. thaliana.
16.

Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice.

blue red CRY2/CIB1 CRY2/CRY2 PhyB/PIF6 HEK293 mouse in vivo U-2 OS Transgene expression
Sci Adv, 1 Jan 2021 DOI: 10.1126/sciadv.abd3568 Link to full text
Abstract: Light-inducible gene switches represent a key strategy for the precise manipulation of cellular events in fundamental and applied research. However, the performance of widely used gene switches is limited due to low tissue penetrance and possible phototoxicity of the light stimulus. To overcome these limitations, we engineer optogenetic synthetic transcription factors to undergo liquid-liquid phase separation in close spatial proximity to promoters. Phase separation of constitutive and optogenetic synthetic transcription factors was achieved by incorporation of intrinsically disordered regions. Supported by a quantitative mathematical model, we demonstrate that engineered transcription factor droplets form at target promoters and increase gene expression up to fivefold. This increase in performance was observed in multiple mammalian cells lines as well as in mice following in situ transfection. The results of this work suggest that the introduction of intrinsically disordered domains is a simple yet effective means to boost synthetic transcription factor activity.
17.

Multichromatic Control of Signaling Pathways in Mammalian Cells.

blue red CRY2/CIB1 PhyB/PIF6 HEK293 Signaling cascade control Multichromatic
Adv Biosyst, 12 Oct 2020 DOI: 10.1002/adbi.202000196 Link to full text
Abstract: The precise control of signaling proteins is a prerequisite to decipher the complexity of the signaling network and to reveal and to study pathways involved in regulating cellular metabolism and gene expression. Optogenetic approaches play an emerging role as they enable the spatiotemporal control of signaling processes. Herein, a multichromatic system is developed by combining the blue light cryptochrome 2 system and the red/far-red light phytochrome B system. The use of three wavelengths allows the orthogonal control of the RAF/ERK and the AKT signaling pathway. Continuous exposure of cells to blue light leads to activation of AKT while simultaneous pulses of red and far-red light enable the modulation of ERK signaling in cells with constantly active AKT signaling. The optimized, orthogonal multichromatic system presented here is a valuable tool to better understand the fine grained and intricate processes involved in cell fate decisions.
18.

Synthesis of a Light-Controlled Phytochrome-Based Extracellular Matrix with Reversibly Adjustable Mechanical Properties.

red Cph1 in vitro
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_15 Link to full text
Abstract: Synthetic extracellular matrices with reversibly adjustable mechanical properties are essential for the investigation of how cells respond to dynamic mechanical cues as occurring in living organisms. One interesting approach to engineer dynamic biomaterials is the incorporation of photoreceptors from cyanobacteria or plants into polymer materials. Here, we give an overview of existing photoreceptor-based biomaterials and describe a detailed protocol for the synthesis of a phytochrome-based extracellular matrix (CyPhyGel). Using cell-compatible light in the red and far-red spectrum, the mechanical properties of this matrix can be adjusted in a fully reversible, wavelength-specific, and dose-dependent manner with high spatiotemporal control.
19.

Optogenetic Downregulation of Protein Levels to Control Programmed Cell Death in Mammalian Cells with a Dual Blue-Light Switch.

blue AsLOV2 EL222 HEK293T
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_11 Link to full text
Abstract: Optogenetic approaches facilitate the study of signaling and metabolic pathways in animal cell systems. In the past 10 years, a plethora of light-regulated switches for the targeted control over the induction of gene expression, subcellular localization of proteins, membrane receptor activity, and other cellular processes have been developed and successfully implemented. However, only a few tools have been engineered toward the quantitative and spatiotemporally resolved downregulation of proteins. Here we present a protocol for reversible and rapid blue light-induced reduction of protein levels in mammalian cells. By implementing a dual-regulated optogenetic switch (Blue-OFF), both repression of gene expression and degradation of the target protein are triggered simultaneously. We apply this system for the blue light-mediated control of programmed cell death. HEK293T cells are transfected with the proapoptotic proteins PUMA and BID integrated into the Blue-OFF system. Overexpression of these proteins leads to programmed cell death, which can be prevented by irradiation with blue light. This experimental approach is very straightforward, requires just simple hardware, and therefore can be easily implemented in state-of-the-art equipped mammalian cell culture labs. The system can be used for targeted cell signaling studies and biotechnological applications.
20.

Optogenetic control of gene expression in plants in the presence of ambient white light.

blue red EL222 PhyB/PIF6 A. thaliana leaf protoplasts N. benthamiana in vivo Transgene expression Multichromatic
Nat Methods, 29 Jun 2020 DOI: 10.1038/s41592-020-0868-y Link to full text
Abstract: Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.
21.

Production, Purification and Characterization of Recombinant Biotinylated Phytochrome B for Extracellular Optogenetics.

red PhyB/PIF6 in vitro
Bio Protoc, 5 Mar 2020 DOI: 10.21769/bioprotoc.3541 Link to full text
Abstract: In the field of extracellular optogenetics, photoreceptors are applied outside of cells to obtain systems with a desired functionality. Among the diverse applied photoreceptors, phytochromes are the only ones that can be actively and reversibly switched between the active and inactive photostate by the illumination with cell-compatible red and far-red light. In this protocol, we describe the production of a biotinylated variant of the photosensory domain of A. thaliana phytochrome B (PhyB-AviTag) in E. coli with a single, optimized expression plasmid. We give detailed instructions for the purification of the protein by immobilized metal affinity chromatography and the characterization of the protein in terms of purity, biotinylation, spectral photoswitching and the light-dependent interaction with its interaction partner PIF6. In comparison to previous studies applying PhyB-AviTag, the optimized expression plasmid used in this protocol simplifies the production process and shows an increased yield and purity.
22.

Optogenetic Tuning of Ligand Binding to The Human T cell Receptor Using The opto-ligand-TCR System.

red PhyB/PIF6 Jurkat
Bio Protoc, 5 Mar 2020 DOI: 10.21769/bioprotoc.3540 Link to full text
Abstract: T cells are one major cell type of the immune system that use their T cell antigen receptor (TCR) to bind and respond to foreign molecules derived from pathogens. The ligand-TCR interaction half-lives determine stimulation outcome. Until recently, scientists relied on mutating either the TCR or its ligands to investigate how varying TCR-ligand interaction durations impacted on T cell activation. Our newly created opto-ligand-TCR system allowed us to precisely and reversibly control ligand binding to the TCR by light illumination. This system uses phytochrome B (PhyB) tetramers as a light-regulated TCR ligand. PhyB can be photoconverted between a binding (ON) and non-binding (OFF) conformation by 660 nm and 740 nm light illumination, respectively. PhyB ON is able to bind to a synthetic TCR, generated by fusing the PhyB interacting factor (PIF) to the TCRβ chain. Switching PhyB to the OFF conformation disrupts this interaction. Sufficiently long binding of PhyB tetramers to the PIF-TCR led to T cell activation as measured by calcium influx. Here, we describe protocols for how to generate the tetrameric ligand for our opto-ligand-TCR system, how to measure ligand-TCR binding by flow cytometry and how to quantify T cell activation via calcium influx.
23.

Production of Phytochromes by High-Cell-Density E. coli Fermentation.

red Cph1 PhyB/PIF6 in vitro
ACS Synth Biol, 26 Sep 2019 DOI: 10.1021/acssynbio.9b00267 Link to full text
Abstract: Phytochromes are important photoreceptors of plants, bacteria, and fungi responsive to light in the red and far-red spectrum. For increasing applications in basic research, synthetic biology, and materials sciences, it is required to recombinantly produce and purify phytochromes in high amounts. An ideal host organism for this purpose is E. coli due to its widespread use, fast growth, and ability for high-cell-density fermentation. Here, we describe the development of a generic platform for the production of phytochromes in E. coli that is compatible with high-cell-density fermentation. We exemplify our approach by the production of the photosensory domains of phytochrome B (PhyB) from A. thaliana and of the cyanobacterial phytochrome 1 (Cph1) from Synechocystis PCC 6803 in the multigram scale per 10 L fermentation run.
24.

OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling.

blue CRY2/CIB1 HeLa Signaling cascade control
ACS Synth Biol, 24 Jun 2019 DOI: 10.1021/acssynbio.9b00059 Link to full text
Abstract: Subcellular localization of signal molecules is a hallmark in organizing the signaling network. OpEn-Tag is a modular optogenetic endomembrane targeting toolbox that allows alteration of the localization and therefore the activity of signaling processes with the spatiotemporal resolution of optogenetics. OpEn-Tag is a two-component system employing (1) a variety of targeting peptides fused to and thereby dictating the localization of mCherry-labeled cryptochrome 2 binding protein CIBN toward distinct endomembranes and (2) the cytosolic, fluorescence-labeled blue light photoreceptor cryptochrome 2 as a customizable building block that can be fused to proteins of interest. The combination of OpEn-Tag with growth factor stimulation or the use of two membrane anchor sequences allows investigation of multilayered signal transduction processes as demonstrated here for the protein kinase AKT.
25.

Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor.

red PhyB/PIF6 Jurkat Signaling cascade control Immediate control of second messengers
Elife, 5 Apr 2019 DOI: 10.7554/elife.42475 Link to full text
Abstract: The immune system distinguishes between self and foreign antigens. The kinetic proofreading (KPR) model proposes that T cells discriminate self from foreign ligands by the different ligand binding half-lives to the T cell receptor (TCR). It is challenging to test KPR as the available experimental systems fall short of only altering the binding half-lives and keeping other parameters of the interaction unchanged. We engineered an optogenetic system using the plant photoreceptor phytochrome B (PhyB) as a ligand to selectively control the dynamics of ligand binding to the TCR by light. This opto-ligand-TCR system was combined with the unique property of PhyB to continuously cycle between the binding and non-binding states under red light, with the light intensity determining the cycling rate and thus the binding duration. Mathematical modeling of our experimental datasets showed that indeed the ligand-TCR interaction half-life is the decisive factor for activating downstream TCR signaling, substantiating KPR.
Submit a new publication to our database